Biblio

Found 41 results
Author Title Type [ Year(Asc)]
Filters: Author is Dura-Bernal, Salvador  [Clear All Filters]
2018
Cantarelli, M., Marin B., Quintana A., Earnshaw M., Gleeson P., Dura-Bernal S., et al. (2018).  Geppetto: a reusable modular open platform for exploring neuroscience data and models. Phil. Trans. R. Soc. B. 373, 20170380.
Tepper, Á., Sugi A., Lytton W. W., & Dura-Bernal S. (2018).  Implementation of Cmicrocircuits model in NetPyNE and exploration of the effect of neuronal/synaptic loss on memory recall. Computational Neuroscience Meeting (CNS 18').
Dura-Bernal, S., Neymotin S., Suter BA., Shepherd GMG., & Lytton WW. (2018).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. bioRxiv.
Dura-Bernal, S., Gleeson P., Neymotin S., Suter B. A., Quintana A., Cantarelli M., et al. (2018).  NetPyNE: a high-level interface to NEURON to facilitate the development, parallel simulation and analysis of data-driven multiscale network models. Computational Neuroscience Meeting (CNS 18').
Dura-Bernal, S., Gleeson P., Kerr C., Graham J., Quintana A., & Lytton WW. (2018).  Neurosim-lab/netpyne: v0.7.7.
Gleeson, P., Cantarelli M., Marin B., Quintana A., Earnshaw M., Piasini E., et al. (2018).  Open Source Brain: a collaborative resource for visualizing, analyzing, simulating and developing standardized models of neurons and circuits. bioRxiv. 229484.
Kerr, C. C., Dura-Bernal S., Smolinski T. G., Chadderdon G. L., & Wilson D. P. (2018).  Optimization by Adaptive Stochastic Descent. PLOS ONE. 13, 1-16.
Gao, P., Graham J., Angulo S., Dura-Bernal S., Hines M., Lytton W. W., et al. (2018).  Recruitment of neurons into neural ensembles based on dendritic plateau potentials. Computational Neuroscience Meeting (CNS 18').
Doherty, D., Sivagnanam S., Dura-Bernal S., & Lytton W. W. (2018).  Simulation of avalanches in mouse primary motor cortex (M1). Computational Neuroscience Meeting (CNS 18').
2016
Dura-Bernal, S., Menzies R. J., McLauchlan C., van Albada S. J., Kedziora D. J., Neymotin S., et al. (2016).  Effect of network size on computational capacity. Computational Neuroscience Meeting (CNS 16').
Neymotin, S. A., Dura-Bernal S., Seidenstein A., Lakatos P., Sanger T. D., & Lytton and. William W. (2016).  Multiscale modeling of multitarget pharmacotherapy for dystonia. Computational Neuroscience Meeting (CNS 16').
Neymotin, S., Dura-Bernal S., Lakatos P., Sanger TD., & Lytton WW. (2016).  Multitarget multiscale simulation for pharmacological treatment of dystonia in motor cortex. Front Pharmacol. 7, 157.
Dura-Bernal, S., BA S., Kerr C. C., Quintana A., Gleeson P., Shepherd GMG., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience.
Dura-Bernal, S., Suter B. A., Neymotin S. A., Kerr C. C., Quintana A., Gleeson P., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience Meeting (CNS 16').
Dura-Bernal, S., Li K., Neymotin S., Francis JT., Principe JC., & Lytton WW. (2016).  Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front Neurosci. 10, 28.
Gleeson, P., Marin B., Sadeh S., Quintana A., Cantarelli M., Dura-Bernal S., et al. (2016).  A set of curated cortical models at multiple scales on Open Source Brain. Computational Neuroscience Meeting (CNS 16').
Lytton, WW., Seidenstein AH., Dura-Bernal S., McDougal R. A., Schürmann F., & Hines ML. (2016).  Simulation neurotechnologies for advancing brain research: parallelizing large networks in NEURON. Neural Comput. 28, 2063-2090.
2015
Dura-Bernal, S., Zhou X., Neymotin S., Przekwas A., Francis J. T., & Lytton WW. (2015).  Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm. Frontiers in Neurorobotics. 9,
Dura-Bernal, S., Majumdar A., Neymotin S., Sivagnanam S., Francis J. T., & Lytton WW. (2015).  A dynamic data-driven approach to closed-loop neuroprosthetics based on multiscale biomimetic brain models. IEEE Interanationl Conference on High Performance Computing 2015 Workshop: InfoSymbiotics/Dynamic Data Driven Applications Systems (DDDAS) for Smarter Systems, Bangalore, India.
Dura-Bernal, S., Kerr C., Neymotin S., Suter B., Shepherd G., Francis J., et al. (2015).  Large-scale M1 microcircuit model with plastic input connections from biological PMd neurons used for prosthetic arm control. 24th Annual Computational Neuroscience Meeting (CNS15).