Lab Publications


Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /home/wwlytton/public_html/includes/
Found 52 results
Author [ Title(Desc)] Type Year
Filters: Author is Samuel Neymotin  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Neymotin, S., Taxin ZH., Mohan A., & Lipton P. (2013).  Brain Ischemia and Stroke. (Jaeger, D., & Jang R., Ed.).Encyclopedia of Computational Neuroscience.
Neymotin, S., McDougal R. A., Bulanova AS., Zeki M., Lakatos P., Terman D., et al. (2016).  Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neurosci. 316, 344-366.
Neymotin, S., McDougal R. A., Hines ML., & Lytton WW. (2014).  Calcium regulation of HCN supports persistent activity associated with working memory: a multiscale model of prefrontal cortex. BMC Neuroscience. 15, P108.
Lytton, WW., Neymotin S., Lee HY., Uhlrich DJ., & Fenton AA. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting. 3, 284.
Eguchi, A., Neymotin S., & Stringer SM. (2014).  Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity. Front Neural Circuits. 8, 16.
Neymotin, S., Mathew A.M.., Kerr C.., & Lytton WW. (2013).  Computational Neuroscience of Neuronal Networks. (Pfaff, D., Ed.).
Neymotin, S., Dura-Bernal S., Moreno H., & Lytton WW. (2017).  Computer modeling for pharmacological treatments for dystonia. Drug Discov Today: Dis Model. In Press.
Kerr, CC., van Albada SJ., Neymotin S., Chadderdon GL., Robinson PA., & Lytton WW. (2013).  Cortical information flow in Parkinson's disease: a composite network/field model. Front Comput Neurosci. 7, 39.
Dura-Bernal, S., Zhou X., Neymotin S., Przekwas A., Francis J. T., & Lytton WW. (2015).  Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm. Frontiers in Neurorobotics. 9,
Neymotin, S., Uhlrich DJ., Manning KA., & Lytton WW. (2008).  Data mining of time-domain features from neural extracellular field data. Studies in Computational Intelligence. 151, 119-140.
Dura-Bernal, S., Majumdar A., Neymotin S., Sivagnanam S., Francis J. T., & Lytton WW. (2015).  A dynamic data-driven approach to closed-loop neuroprosthetics based on multiscale biomimetic brain models. IEEE Interanationl Conference on High Performance Computing 2015 Workshop: InfoSymbiotics/Dynamic Data Driven Applications Systems (DDDAS) for Smarter Systems, Bangalore, India.
Neymotin, S., Lytton WW., O'Connell MN., & Lakatos P. (2013).  Dynamical microstates in primary auditory cortex. Society for Neuroscience Abstracts. 43,