Lab Publications

Found 59 results
[ Author(Asc)] Title Type Year
Filters: First Letter Of Last Name is L  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Lytton, WW., & Stewart M. (2005).  A rule-based firing model for neural networks. Int. J. for Bioelectromagnetism. 7, 47-50.
Lytton, WW., Neymotin S., Wester JC., & Contreras D. (2014).  Neocortical simulation for epilepsy surgery guidance: localization and intervention. (Bass, B., & Garbey M., Ed.).Computational Surgery and Dual Training. 339–349.
Lytton, WW., & Sejnowski TJ. (1991).  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. 66, 1059-1079.
Lytton, WW., & Thomas E. (1999).  Modeling thalamocortical oscillations. (Ulinski, P., Jones EG., & Peters A., Ed.).Cerebral Cortex. 13, 479-509.
Lytton, W. W., & Hines M. (2007).  Just-in-time connectivity for very large neuronal networks. Computational Neuroscience Meeting (CNS 07').
Lytton, WW., & Stewart M. (2002).  Dendritic resonance in in subicular dendrites, a computer model. 28,
Lytton, WW., Orman R., & Stewart M. (2008).  Broadening of activity with flow across neural structures. Perception. 37, 401-407.
Lytton, WW., & Hines M. (2005).  Independent variable timestep integration of individual neurons for network simulations. 17, 903-921.
Lytton, WW., Hellman KM., & Sutula TP. (1998).  Computer Models of Hippocampal Circuit Changes of the Kindling Model of Epilepsy. Artificial Intelligence in Medicine. 13, 81-98.
Lytton, WW., & Stewart M. (2006).  Rule-based firing for network simulations. Neurocomputing. 69, 1160-1164.
Lytton, WW., & Shepherd G. M. G. (2010).  Computer network model predicts dependence of neocortical laminar activation patterns on form of stimulation. Society for Neuroscience 2010 (SFN '10).
Lytton, WW., Neymotin S., Lee HY., Uhlrich DJ., & Fenton AA. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting. 3, 284.
Lytton, WW., & Kristan WB. (1989).  Localization of a leech inhibitory synapse by photo-ablation of individual dendrites. 504, 43-48.
Lytton, WW. (1997).  Brain organization: from molecules to parallel processing. (Trimble, MR., & Cummings JL., Ed.).Contemporary Behavioral Neurology. 5-28.
Lytton, WW., & Drongelen W. (2015).  Beyond the canon: temporal and spatial multiscale organization in cortex. Computational Neuroscience Meeting Workshop.
Lytton, WW., & Lipton P. (1999).  Can the hippocampus tell time?: The temporo-septal engram shift model. Neuroreport. 10, 2301-2306.
Lytton, WW., Neymotin S., & Hines ML. (2008).  The virtual slice setup. J Neurosci Methods. 171, 309-315.
Lytton, WW., & Sejnowski TJ. (1992).  Computational Neuroscience. (Asbury, AK., McKhann GM., & McDonald WI., Ed.).Diseases of the Nervous System: Clinical Neurobiology.
Lytton, WW. (2017).  Computers, causality and cure in epilepsy. Brain. 140, 516-519.
Lytton, WW., Hellman KM., & Sutula TP. (1996).  Computer network model of mossy fiber sprouting in dentate gyrus. Epilepsia – AES Proceedings. 37 S. 5, 117.
Lytton, WW. (2006).  Neural query system: data-mining from within the NEURON simulator. Neuroinformatics. 4, 163-176.
Lytton, WW., & Stewart M. (2007).  Data mining through simulation. Methods Mol Biol. 401, 155-166.
Lytton, WW., & Brust JC. (1989).  Direct dyslexia: Preserved oral reading of real words in Wernicke's aphasia. Brain. 112, 583-594.
Lytton, WW., & Kerr C.. (2013).  Computational Neuroscience of Neurons and Synapses. (Pfaff, D., Ed.).
Lytton, WW., Destexhe A., & Sejnowski TJ. (1996).  Control of slow oscillations in the thalamocortical neuron: A computer model. Neuroscience. 70, 673-684.
Lytton, WW., Kerr CC., Chadderdon GL., Neymotin SA., & Francis JT. (2012).  Reinforcement learning of 2-joint virtual arm reaching in detailed cortex simulation. Neural Control of Movement.
Lytton, WW., Williams ST., & Sober SJ. (1999).  Unmasking unmasked: Neural dynamics following stroke. Progress in Brain Research. 121, 203-218.
Lytton, WW., Stewart M., & Hines ML. (2008).  Simulation of large networks: technique and progress. (Soltesz, I., & Staley K., Ed.).Computational Neuroscience in Epilepsy. 3-17.
Lytton, WW., Neymotin S., & Kerr CC. (2014).  Multiscale modeling for clinical translation in neuropsychiatric disease. J Comput Surgery. 1, 7.
Lytton, WW., & Sejnowski TJ. (1992).  Computer model of ethosuximide's effect on a thalamic neuron. 32, 131-139.
Lytton, WW. (2017).  Computer modeling of epilepsy: opportunities for drug discovery. Drug Discov Today: Dis Model. In press.
Lytton, WW. (1997).  A computer model of clonazepam's effect in a thalamic slice model of absence epilepsy. Neuroreport. 8, 3339-3343.
Lytton, WW., Orman R., & Stewart M. (2005).  Computer simulation of epilepsy: implications for seizure spread and behavioral dysfunction. Epilepsy & Behavior. 7, 336-344.
Lytton, WW. (2018).  Multiscale modeling of brain disease. Society for Neuroscience 2018 (SFN '18).
Lytton, WW. (2008).  Computer modelling of epilepsy. Nat Rev Neurosci. 9, 626-637.
Lytton, WW., Arle J., Bobashev G., Ji S., Klassen TL., Marmarelis VZ., et al. (2017).  Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform. 4, 219-230.
Lytton, WW. (1996).  Optimizing synaptic conductance calculation for network simulations. ncomp. 8, 501-510.
Lytton, WW., Neymotin SA., Lee HK., Uhlrich DJ., & AA F. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting.
Lytton, WW., Stark JM., Yamasaki DS., & Sober SJ. (1999).  Computer models of stroke recovery: Implications for neurorehabilitation. The Neuroscientist. 5, 100-111.
Lytton, WW., & Omurtag A. (2007).  Tonic-clonic transitions in computer simulation. J Clin Neurophys. 24, 175-181.
Lytton, WW., Vadigepalli R., & Kramer MA. (2015).  Multiscale Computational Modeling for the US BRAIN initiative.
Lytton, WW. (1991).  Simulations of a phase comparing neuron of the electric fish Eigenmannia. 169, 117-125.
Lytton, WW., Seidenstein AH., Dura-Bernal S., McDougal R. A., Schürmann F., & Hines ML. (2016).  Simulation neurotechnologies for advancing brain research: parallelizing large networks in NEURON. Neural Comput. 28, 2063-2090.
Lytton, WW., Contreras D., Destexhe A., & Steriade M. (1997).  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. jnphys. 77, 1679-1696.
Lytton, WW. (2002).  From Computer to Brain.
Lytton, WW., Knox A., & Rosenthal J. J. C. (2017).  Site-directed mRNA editing of sodium channels has potential to alter neuronal firing and network dynamics: Computer models. Society for Neuroscience 2017 (SFN '17).
Lytton, WW., Omurtag A., Neymotin S., & Hines ML. (2008).  Just-in-time connectivity for large spiking networks. ncomp. 20, 2745-2756.
Lytton, WW., & Hines M. (2004).  Hybrid neural networks - combining abstract and realistic neural units. IEEE Engineering in Medicine and Biology Society Proceedings. 6, 3996-3998.
Lytton, WW., & Wathey J. C. (1992).  Realistic single-neuron modeling. Seminars in Neuroscience. 4, 15-25.
Lytton, WW. (1998).  Adapting a feedforward heteroassociative network to Hodgkin-Huxley dynamics. J. Computational Neuroscience. 5, 353-364.
Lin, Z., Tropper C., McDougal R. A., Patoary M. Nazrul Ish, Lytton WW., Yao Y., et al. (2017).  Multithreaded Stochastic PDES for Reactions and Diffusions in Neurons. ACM Transactions on Modeling and Computer Simulation (TOMACS). 27, 7.
Lin, Z., Tropper C., Patoary M. Nazrul Ish, McDougal R. A., Lytton WW., & Hines M. L. (2015).  Ntw-mt: A multi-threaded simulator for reaction diffusion simulations in neuron. Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. 157–167.
Lin, Z., Tropper C., Yao Y., McDougal R. A., Patoary MN., Lytton WW., et al. (2017).  Load balancing for multi-threaded PDES of stochastic reaction-diffusion in neurons. J Simulation. 11, 267.
Li, K., Dura-Bernal S., Francis J., Lytton WW., & Principe J. (2015).  Repairing Lesions via Kernel Adaptive Inverse Control in a Biomimetic Model of Sensorimotor Cortex. Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference. 1-4.
Lee, GJ., Matsunaga A., Dura-Bernal S., Zhang W., Lytton WW., Francis JT., et al. (2014).  Towards real-time communication between in vivo neurophysiological data sources and simulator-based brain biomimetic models. Journal of Computational Surgery. 3, 12.
Lazarewicz, M. T., Contreras D., Finkel L. H., & Lytton WW. (2009).  Computer model of a theta-gamma dissociation in hippocampus. Society for Neuroscience 2009 (SFN '09).
Lakatos, P., Barczak A., Neymotin S. A., Lytton WW., Mcginnis T., Javitt D. C., et al. (2014).  Thalamocortical dynamics of rhythmic selective and tonic suppressive modes in the auditory system. Society for Neuroscience 2014 (SFN '14).
Lakatos, P., Barczak A., Neymotin S., Lytton WW., McGinnis T., Javitt D., et al. (2014).  Thalamocortical dynamics of rhythmic selective and tonic suppressive modes in the auditory system. Society for Neuroscience Abstracts. 44,
Lakatos, P., Barczak A., Neymotin S., McGinnis T., Ross D., Javitt DC., et al. (2016).  Global dynamics of selective attention and its lapses in primary auditory cortex. Nat Neurosci. In press.