Lab Publications

×

Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /home/wwlytton/public_html/includes/menu.inc).
Found 52 results
Author Title [ Type(Desc)] Year
Filters: Author is Samuel Neymotin  [Clear All Filters]
Conference Paper
Dura-Bernal, S., Majumdar A., Neymotin S., Sivagnanam S., Francis J. T., & Lytton WW. (2015).  A dynamic data-driven approach to closed-loop neuroprosthetics based on multiscale biomimetic brain models. IEEE Interanationl Conference on High Performance Computing 2015 Workshop: InfoSymbiotics/Dynamic Data Driven Applications Systems (DDDAS) for Smarter Systems, Bangalore, India.
Dura-Bernal, S., Menzies R. J., McLauchlan C., van Albada S. J., Kedziora D. J., Neymotin S., et al. (2016).  Effect of network size on computational capacity. Computational Neuroscience Meeting (CNS 16').
Dura-Bernal, S., Prins N., Neymotin S., Prasad A., Sanchez J., Francis JT., et al. (2014).  Evaluating Hebbian reinforcement learning BMI using an in silico brain model and a virtual musculoskeletal arm.. Neural Control of Movement.
Dura-Bernal, S., Kerr C., Neymotin S., Suter B., Shepherd G., Francis J., et al. (2015).  Large-scale M1 microcircuit model with plastic input connections from biological PMd neurons used for prosthetic arm control. 24th Annual Computational Neuroscience Meeting (CNS15).
Dura-Bernal, S., Gleeson P., Neymotin S., Suter B. A., Quintana A., Cantarelli M., et al. (2018).  NetPyNE: a high-level interface to NEURON to facilitate the development, parallel simulation and analysis of data-driven multiscale network models. Computational Neuroscience Meeting (CNS 18').
Dura-Bernal, S., Li K., Brockmeier A., Kerr CC., Neymotin S., Principe J., et al. (2014).  Repairing lesions via microstimulation in a spiking network model driving a virtual arm.. Society for Neuroscience.
Neymotin, S., Kerr CC., Francis JT., & Lytton WW. (2011).  Training oscillatory dynamics with spike-timing-dependent plasticity in a computer model of neocortex. 2011 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). 1–6.
Dura-Bernal, S., Chadderdon G.L.., Neymotin S., Zhou X., Przekwas A.., Francis J.T.., et al. (2013).  Virtual musculoskeletal arm and robotic arm driven by a biomimetic model of sensorimotor cortex with reinforcement learning. Signal Processing in Medicine and Biology Symposium (SPMB), 2013 IEEE. 1-5.
Journal Article
Neymotin, S., McDougal R. A., Bulanova AS., Zeki M., Lakatos P., Terman D., et al. (2016).  Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neurosci. 316, 344-366.
Neymotin, S., McDougal R. A., Hines ML., & Lytton WW. (2014).  Calcium regulation of HCN supports persistent activity associated with working memory: a multiscale model of prefrontal cortex. BMC Neuroscience. 15, P108.
Lytton, WW., Neymotin S., Lee HY., Uhlrich DJ., & Fenton AA. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting. 3, 284.
Eguchi, A., Neymotin S., & Stringer SM. (2014).  Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity. Front Neural Circuits. 8, 16.
Neymotin, S., Dura-Bernal S., Moreno H., & Lytton WW. (2017).  Computer modeling for pharmacological treatments for dystonia. Drug Discov Today: Dis Model. In Press.
Kerr, CC., van Albada SJ., Neymotin S., Chadderdon GL., Robinson PA., & Lytton WW. (2013).  Cortical information flow in Parkinson's disease: a composite network/field model. Front Comput Neurosci. 7, 39.
Dura-Bernal, S., Zhou X., Neymotin S., Przekwas A., Francis J. T., & Lytton WW. (2015).  Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm. Frontiers in Neurorobotics. 9,
Neymotin, S., Uhlrich DJ., Manning KA., & Lytton WW. (2008).  Data mining of time-domain features from neural extracellular field data. Studies in Computational Intelligence. 151, 119-140.
Neymotin, S., Lytton WW., O'Connell MN., & Lakatos P. (2013).  Dynamical microstates in primary auditory cortex. Society for Neuroscience Abstracts. 43,
Kerr, CC., Neymotin S., Chadderdon GL., Fietkiewicz CT., Francis JT., & Lytton WW. (2012).  Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE Trans Neural Syst Rehab Eng. 20, 153–60.
Rowan, MS., Neymotin S., & Lytton WW. (2014).  Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci. 8, 39.
Neymotin, S., Lee HY., Park EH., Fenton AA., & Lytton WW. (2011).  Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci. 5, 19.
Dura-Bernal, S., Neymotin S., Kerr CC., Sivagnanam S., Majumdar A., Francis JT., et al. (2017).  Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and Development. 61, 6–1.
Lakatos, P., Barczak A., Neymotin S., McGinnis T., Ross D., Javitt DC., et al. (2016).  Global dynamics of selective attention and its lapses in primary auditory cortex. Nat Neurosci. In press.
Neymotin, S., Hilscher MM., Moulin TC., Skolnick Y., Lazarewicz MT., & Lytton WW. (2013).  Ih Tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model. PLoS One. 8, e76285.
Sanjay, M., Neymotin S., & Babu KS. (2015).  Impaired dendritic inhibition leads to epileptic activity in a computer model of CA3. Hippocampus. in press.
Neymotin, S., Lee HY., Fenton AA., & Lytton WW. (2010).  Interictal EEG Discoordination in a Rat Seizure Model. J Clin Neurophysiol. 27, 438–444.
Lytton, WW., Omurtag A., Neymotin S., & Hines ML. (2008).  Just-in-time connectivity for large spiking networks. ncomp. 20, 2745-2756.
Neymotin, S., Lazarewicz MT., Sherif M., Contreras D., Finkel LH., & Lytton WW. (2011).  Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. J Neurosci. 31, 11733-11743.
Dura-Bernal, S., Neymotin S., Suter BA., Shepherd GMG., & Lytton WW. (2018).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. bioRxiv.
Neymotin, S., Lytton WW., Olypher AO., & AA F. (2011).  Measuring the quality of neuronal identification in ensemble recordings. jnsci. 31, 16398–16409.
Taxin, ZH., Neymotin S., Mohan A., Lipton P., & Lytton WW. (2014).  Modeling molecular pathways of neuronal ischemia. Prog Mol Biol Transl Sci. 123, 249–275.
Dura-Bernal, S., Li K., Brockmeier A., Kerr C., Neymotin S., Principe J., et al. (2014).  Modulation of virtual arm trajectories via microstimulation in a spiking model of sensorimotor cortex. BMC Neuroscience. 15, P106.
Chadderdon, GL., Mohan A., Suter BA., Neymotin S., Kerr CC., Francis JT., et al. (2014).  Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput. 26, 1239–1262.
Lytton, WW., Neymotin S., & Kerr CC. (2014).  Multiscale modeling for clinical translation in neuropsychiatric disease. J Comput Surgery. 1, 7.
Neymotin, S., Dura-Bernal S., Lakatos P., Sanger TD., & Lytton WW. (2016).  Multitarget multiscale simulation for pharmacological treatment of dystonia in motor cortex. Front Pharmacol. 7, 157.
Neymotin, S., McDougal R. A., Sherif MA., Fall CP., Hines ML., & Lytton WW. (2015).  Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Comput. 27, 898–924.
Neymotin, S., Suter BA., Dura-Bernal S., Shepherd GM., Migliore M., & Lytton WW. (2017).  Optimizing computer models of corticospinal neurons to replicate in vitro dynamics. J Neurophysiol. 117, 148-162.
Neymotin, S., Chadderdon GL., Kerr CC., Francis JT., & Lytton WW. (2013).  Reinforcement learning of 2-joint virtual arm reaching in computer model of sensorimotor cortex. Neural Comput. 25, 3263–3293.
Chadderdon, GL., Neymotin S., Kerr CC., & Lytton WW. (2012).  Reinforcement Learning of Targeted Movement in a Spiking Neuronal Model of Motor Cortex. PLoS One. 7, e47251.
Dura-Bernal, S., Li K., Neymotin S., Francis JT., Principe JC., & Lytton WW. (2016).  Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front Neurosci. 10, 28.
Neymotin, S., Olypher AV., Kao HY., Kelemen E., Jozwicka AE., Lytton WW., et al. (2008).  Standardized assessment of extracellular single unit isolation quality. socns. 690, 12.
Neymotin, S., Jacobs KM., Fenton AA., & Lytton WW. (2011).  Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci. 30, 69-84.
Rowan, M., & Neymotin S. (2013).  Synaptic scaling balances learning in a spiking model of neocortex. Springer LNCS. 7824, 20–29.
Lakatos, P., Barczak A., Neymotin S., Lytton WW., McGinnis T., Javitt D., et al. (2014).  Thalamocortical dynamics of rhythmic selective and tonic suppressive modes in the auditory system. Society for Neuroscience Abstracts. 44,
Dura-Bernal, S., Chadderdon GL., Neymotin S., Francis JT., & Lytton WW. (2014).  Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm. Pattern Recognit Lett. 36, 204–212.
Neymotin, S., Talbot ZN., Jung JQ., Fenton AA., & Lytton WW. (2017).  Tracking recurrence of correlation structure in neuronal recordings. J Neurosci Methods. 275, 1-9.
Fenton, AA., Kao HY., Neymotin S., Olypher A., Vayntrub Y., Lytton WW., et al. (2008).  Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. jnsci. 28, 11250-11262.
Lytton, WW., Neymotin S., & Hines ML. (2008).  The virtual slice setup. J Neurosci Methods. 171, 309-315.