Lab Publications

Found 151 results
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Dura-Bernal, S., Kerr C., Neymotin S., Suter B., Shepherd G., Francis J., et al. (2015).  Large-scale M1 microcircuit model with plastic input connections from biological PMd neurons used for prosthetic arm control. 24th Annual Computational Neuroscience Meeting (CNS15).
Dura-Bernal, S., Kerr C., Neymotin S., Suter B., Shepherd G., Francis J., et al. (2015).  Large-scale M1 microcircuit model with plastic input connections from biological PMd neurons used for prosthetic arm control. 24th Annual Computational Neuroscience Meeting (CNS15).
Orman, R., Von Gizycki G., Lytton WW., & Stewart M. (2008).  Local axon collaterals of area ca1 support spread of epileptiform discharges within CA1, but propagation is unidirectional. Hippocampus. 18, 1021-1033.
Dura-Bernal, S., Neymotin S., Suter BA., Shepherd GMG., & Lytton WW. (2018).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. bioRxiv.
Dura-Bernal, S., Neymotin S., Suter BA., Shepherd GMG., & Lytton WW. (2018).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. bioRxiv.
Dura-Bernal, S., Neymotin S. A., Suter B. A., Shepherd G. M., & Lytton WW. (2017).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. Society for Neuroscience 2017 (SFN '17).
Dura-Bernal, S., Neymotin S. A., Suter B. A., Shepherd G. M., & Lytton WW. (2017).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. Society for Neuroscience 2017 (SFN '17).
M
Womack, KB., Paliotta C., Strain JF., Ho JS., Skolnick Y., Lytton WW., et al. (2017).  Measurement of peripheral vision reaction time identifies white matter disruption in patients with mild traumatic brain injury. J Neurotrauma.
Womack, KB., Paliotta C., Strain JF., Ho JS., Skolnick Y., Lytton WW., et al. (2017).  Measurement of peripheral vision reaction time identifies white matter disruption in patients with mild traumatic brain injury. J Neurotrauma.
Neymotin, SA., Salvador D-B., Suter BA., Migliore M., Shepherd GMG., & Lytton WW. (2015).  Microconnectomics of primary motor cortex: a multiscale computer model. Multiscale Modeling. National Institutes of Health.
Neymotin, SA., Salvador D-B., Suter BA., Migliore M., Shepherd GMG., & Lytton WW. (2015).  Microconnectomics of primary motor cortex: a multiscale computer model. Multiscale Modeling. National Institutes of Health.
Neymotin, SA., Salvador D-B., Suter BA., Migliore M., Shepherd GMG., & Lytton WW. (2015).  Microconnectomics of primary motor cortex: a multiscale computer model. Multiscale Modeling. National Institutes of Health.
Graham, J.. W., Gao P.. P., Dura-Bernal S.., Sivagnanam S.., Hines M.. L., Antic S.. D., et al. (2019).  Modeling network effects of dendritic plateau potentials in cortical pyramidal neurons. Society for Neuroscience 2019 (SFN '19).
Kerr, CC., Neymotin SA., Song W., Francis JT., & Lytton WW. (2011).  Modulation of stimulus fields in a computer model of the thalamocortical system. Society for Neuroscience.
Seidenstein, A., Mcdougal R. A., Hines M. L., & Lytton WW. (2016).  Mosaic multiscale computer modeling of ischemic stroke. Society for Neuroscience 2016 (SFN '16).
Chadderdon, GL., Mohan A., Suter BA., Neymotin S., Kerr CC., Francis JT., et al. (2014).  Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput. 26, 1239–1262.
Chadderdon, GL., Mohan A., Suter BA., Neymotin S., Kerr CC., Francis JT., et al. (2014).  Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput. 26, 1239–1262.
Neymotin, SA., BA S., Migliore M., Salvador D-B., Shepherd GMG., & Lytton WW. (2015).  Motor cortex neurons: from experiment to model via evolutionary algorithms. Computational Neuroscience.
Neymotin, SA., BA S., Migliore M., Salvador D-B., Shepherd GMG., & Lytton WW. (2015).  Motor cortex neurons: from experiment to model via evolutionary algorithms. Computational Neuroscience.
Seidenstein, A., Newton A., Macdougal R. A., & Lytton WW. (2017).  Multiscale computer modeling of penumbral zones in brain ischemia. Society for Neuroscience 2017 (SFN '17).
Lytton, WW., Arle J., Bobashev G., Ji S., Klassen TL., Marmarelis VZ., et al. (2017).  Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform. 4, 219-230.
Lytton, WW., Arle J., Bobashev G., Ji S., Klassen TL., Marmarelis VZ., et al. (2017).  Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform. 4, 219-230.
Lytton, WW., Arle J., Bobashev G., Ji S., Klassen TL., Marmarelis VZ., et al. (2017).  Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform. 4, 219-230.
Neymotin, S. A., Dura-Bernal S., Seidenstein A., Lakatos P., Sanger T. D., & Lytton and. William W. (2016).  Multiscale modeling of multitarget pharmacotherapy for dystonia. Computational Neuroscience Meeting (CNS 16').
Neymotin, S. A., Dura-Bernal S., Seidenstein A., Lakatos P., Sanger T. D., & Lytton and. William W. (2016).  Multiscale modeling of multitarget pharmacotherapy for dystonia. Computational Neuroscience Meeting (CNS 16').
Newton, A., Seidenstein A. H., Hines M. L., Mcdougal R. A., & Lytton WW. (2018).  Multiscale simulation of spreading depolarization in ischemic stroke. Society for Neuroscience 2018 (SFN '18).
Neymotin, S., Dura-Bernal S., Lakatos P., Sanger TD., & Lytton WW. (2016).  Multitarget multiscale simulation for pharmacological treatment of dystonia in motor cortex. Front Pharmacol. 7, 157.
N
Dura-Bernal, S., Suter B. A., Quintana A., Cantarelli M., Gleeson P., Rodriguez F., et al. (2018).  NetPyNE: A GUI-based tool to build, simulate and analyze large-scale, data-driven network models in parallel NEURON. Society for Neuroscience 2018 (SFN '18).
Dura-Bernal, S., Suter B. A., Quintana A., Cantarelli M., Gleeson P., Rodriguez F., et al. (2018).  NetPyNE: A GUI-based tool to build, simulate and analyze large-scale, data-driven network models in parallel NEURON. Society for Neuroscience 2018 (SFN '18).
Dura-Bernal, S., Gleeson P., Neymotin S., Suter B. A., Quintana A., Cantarelli M., et al. (2018).  NetPyNE: a high-level interface to NEURON to facilitate the development, parallel simulation and analysis of data-driven multiscale network models. Computational Neuroscience Meeting (CNS 18').
Dura-Bernal, S., Gleeson P., Neymotin S., Suter B. A., Quintana A., Cantarelli M., et al. (2018).  NetPyNE: a high-level interface to NEURON to facilitate the development, parallel simulation and analysis of data-driven multiscale network models. Computational Neuroscience Meeting (CNS 18').
Dura-Bernal, S., BA S., Kerr C. C., Quintana A., Gleeson P., Shepherd GMG., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience.
Dura-Bernal, S., Suter B. A., Neymotin S. A., Kerr C. C., Quintana A., Gleeson P., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience Meeting (CNS 16').
Dura-Bernal, S., Suter B. A., Neymotin S. A., Kerr C. C., Quintana A., Gleeson P., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience Meeting (CNS 16').
Dura-Bernal, S., Suter B. A., Gleeson P., Cantarelli M., Quintana A., Rodriguez F., et al. (2019).  NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife. 8, e44494.
Dura-Bernal, S., Suter B. A., Gleeson P., Cantarelli M., Quintana A., Rodriguez F., et al. (2019).  NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife. 8, e44494.
Mohan, A., Chadderdon G. L., Suter B. A., Shepherd G. M. G., & Lytton WW. (2013).  Network-level coincidence detection in a computer simulation of primary motor cortex. Society for Neuroscience 2013 (SFN '13).
Mohan, A., Chadderdon G. L., Suter B. A., Shepherd G. M. G., & Lytton WW. (2013).  Network-level coincidence detection in a computer simulation of primary motor cortex. Society for Neuroscience 2013 (SFN '13).
Kerr, CC., O'Shea DJ., Goo W., Dura-Bernal S., Francis JT., Diester I., et al. (2014).  Network-level effects of optogenetic stimulation in a computer model of macaque primary motor cortex. BMC Neuroscience. 15, P107.
Kerr, C. C., O'Shea D. J., Goo W., Dura-Bernal S., Francis J. T., Diester I., et al. (2014).  Network-level effects of optogenetic stimulation in a computer model of macaque primary motor cortex. Computational Neuroscience Meeting (CNS 14').
Neymotin, S., McDougal R. A., Sherif MA., Fall CP., Hines ML., & Lytton WW. (2015).  Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Comput. 27, 898–924.
Seidenstein, A., Neymotin S. A., Fesharaki A., Hines M. L., Mcdougal R. A., Bulanova A. S., et al. (2015).  Neuronal network bump attractors augmented by calcium up-regulation of Ih in a multiscale computer model of prefrontal cortex. Society for Neuroscience 2015 (SFN '15).
Dura-Bernal, S., Suter B. A., Neymotin S. A., Quintana A., Gleeson P., Sheperd G. M. G., et al. (2015).  Normalized cortical depth (NCD) as a primary coordinate system for cell connectivity in cortex: experiment and model. Society for Neuroscience 2015 (SFN '15).
Dura-Bernal, S., Suter B. A., Neymotin S. A., Quintana A., Gleeson P., Sheperd G. M. G., et al. (2015).  Normalized cortical depth (NCD) as a primary coordinate system for cell connectivity in cortex: experiment and model. Society for Neuroscience 2015 (SFN '15).
S
Sherif, M. A., Neymotin S. A., & Lytton WW. (2016).  Schizophrenia genome-wide association studied with computer simulation: gamma oscillations and information flow in CA3. Society for Neuroscience 2016 (SFN '16).
Gleeson, P., Marin B., Sadeh S., Quintana A., Cantarelli M., Dura-Bernal S., et al. (2016).  A set of curated cortical models at multiple scales on Open Source Brain. Computational Neuroscience Meeting (CNS 16').
Gleeson, P., Marin B., Sadeh S., Quintana A., Cantarelli M., Dura-Bernal S., et al. (2016).  A set of curated cortical models at multiple scales on Open Source Brain. Computational Neuroscience Meeting (CNS 16').
Lytton, WW., Seidenstein AH., Dura-Bernal S., McDougal R. A., Schürmann F., & Hines ML. (2016).  Simulation neurotechnologies for advancing brain research: parallelizing large networks in NEURON. Neural Comput. 28, 2063-2090.
Lytton, WW., Seidenstein AH., Dura-Bernal S., McDougal R. A., Schürmann F., & Hines ML. (2016).  Simulation neurotechnologies for advancing brain research: parallelizing large networks in NEURON. Neural Comput. 28, 2063-2090.
Doherty, D., Sivagnanam S., Dura-Bernal S., & Lytton W. W. (2018).  Simulation of avalanches in mouse primary motor cortex (M1). Computational Neuroscience Meeting (CNS 18').
Lytton, WW., Stewart M., & Hines ML. (2008).  Simulation of large networks: technique and progress. (Soltesz, I., & Staley K., Ed.).Computational Neuroscience in Epilepsy. 3-17.
Lytton, WW., Stewart M., & Hines ML. (2008).  Simulation of large networks: technique and progress. (Soltesz, I., & Staley K., Ed.).Computational Neuroscience in Epilepsy. 3-17.
Lytton, WW., Stewart M., & Hines ML. (2008).  Simulation of large networks: technique and progress. (Soltesz, I., & Staley K., Ed.).Computational Neuroscience in Epilepsy. 3-17.
Lytton, WW., & Sejnowski TJ. (1991).  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. 66, 1059-1079.
Wathey, JC., Lytton WW., Jester JM., & Sejnowski TJ. (1991).  Simulations of synaptic potentials using realistic models of hippocampal pyramidal neurons. 163, 18.
C Hunt, A., Erdemir A., Gabhann F. Mac, Lytton WW., Sander E. A., Transtrum M. K., et al. (2018).  The Spectrum of Mechanism-oriented Models for Explanations of Biological Phenomena.