Lab Publications

×

Error message

Deprecated function: The each() function is deprecated. This message will be suppressed on further calls in menu_set_active_trail() (line 2405 of /home/wwlytton/public_html/includes/menu.inc).
Found 73 results
Author [ Title(Desc)] Type Year
Filters: Author is Neymotin, SA  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Neymotin, S., Taxin ZH., Mohan A., & Lipton P. (2013).  Brain Ischemia and Stroke. (Jaeger, D., & Jang R., Ed.).Encyclopedia of Computational Neuroscience.
C
Neymotin, S., McDougal R. A., Bulanova AS., Zeki M., Lakatos P., Terman D., et al. (2016).  Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neurosci. 316, 344-366.
Neymotin, S., McDougal R. A., Hines ML., & Lytton WW. (2014).  Calcium regulation of HCN supports persistent activity associated with working memory: a multiscale model of prefrontal cortex. BMC Neuroscience. 15, P108.
Lytton, WW., Neymotin S., Lee HY., Uhlrich DJ., & Fenton AA. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting. 3, 284.
Lytton, WW., Neymotin SA., Lee HK., Uhlrich DJ., & AA F. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting.
Eguchi, A., Neymotin S., & Stringer SM. (2014).  Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity. Front Neural Circuits. 8, 16.
Neymotin, S., Mathew A.M.., Kerr C.., & Lytton WW. (2013).  Computational Neuroscience of Neuronal Networks. (Pfaff, D., Ed.).
Neymotin, S., Dura-Bernal S., Moreno H., & Lytton WW. (2017).  Computer modeling for pharmacological treatments for dystonia. Drug Discov Today: Dis Model. In Press.
Kerr, CC., van Albada SJ., Neymotin S., Chadderdon GL., Robinson PA., & Lytton WW. (2013).  Cortical information flow in Parkinson's disease: a composite network/field model. Front Comput Neurosci. 7, 39.
Dura-Bernal, S., Zhou X., Neymotin S., Przekwas A., Francis J. T., & Lytton WW. (2015).  Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm. Frontiers in Neurorobotics. 9,
Sherif, MA., Barry JM., Neymotin SA., & Lytton WW. (2012).  CPP alters hippocampal CA1 oscillations in rat: simulation and experiment. Computational Neuroscience.
D
Neymotin, S., Uhlrich DJ., Manning KA., & Lytton WW. (2008).  Data mining of time-domain features from neural extracellular field data. Studies in Computational Intelligence. 151, 119-140.
Kerr, CC., Fietkiewicz CT., Chadderdon GL., Neymotin SA., & Lytton WW. (2010).  Development of In Silico Brain for DARPA REPAIR project. DARPA Neural Engineering, Science, and Technology Meeting.
Chadderdon, GL., Neymotin SA., Kerr CC., Francis JT., & Lytton WW. (2012).  Dopamine-based reinforcement learning of virtual arm reaching task in a spiking model of motor cortex. International Conference on Cognititve and Neural Systems 16.
Chadderdon, GL., Neymotin SA., Kerr CC., Francis JT., & Lytton WW. (2012).  Dopamine-based reinforcement learning of virtual arm reaching task in a spiking model of motor cortex. Society for Neuroscience.
Dura-Bernal, S., Majumdar A., Neymotin S., Sivagnanam S., Francis J. T., & Lytton WW. (2015).  A dynamic data-driven approach to closed-loop neuroprosthetics based on multiscale biomimetic brain models. IEEE Interanationl Conference on High Performance Computing 2015 Workshop: InfoSymbiotics/Dynamic Data Driven Applications Systems (DDDAS) for Smarter Systems, Bangalore, India.
Neymotin, S., Lytton WW., O'Connell MN., & Lakatos P. (2013).  Dynamical microstates in primary auditory cortex. Society for Neuroscience Abstracts. 43,
E
Dura-Bernal, S., Menzies R. J., McLauchlan C., van Albada S. J., Kedziora D. J., Neymotin S., et al. (2016).  Effect of network size on computational capacity. Computational Neuroscience Meeting (CNS 16').
Kerr, CC., van Albada SJ., Chadderdon GL., Neymotin SA., Robinson PA., & Lytton WW. (2012).  Effects of basal ganglia on cortical computation: a hybrid network/neural field model. Society for Neuroscience.
Kerr, CC., Neymotin S., Chadderdon GL., Fietkiewicz CT., Francis JT., & Lytton WW. (2012).  Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE Trans Neural Syst Rehab Eng. 20, 153–60.
Rowan, MS., Neymotin S., & Lytton WW. (2014).  Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Front Comput Neurosci. 8, 39.
Neymotin, S., Lee HY., Park EH., Fenton AA., & Lytton WW. (2011).  Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci. 5, 19.
Neymotin, SA., H L., Park EH., AA F., & Lytton WW. (2010).  Emergent oscillations in neocortex: a simulation study. Dynamical Neuroscience XVIII: The Resting Brain: Not at Rest! Satellite meeting for Society for Neuroscience Meeting.
Dura-Bernal, S., Prins N., Neymotin S., Prasad A., Sanchez J., Francis JT., et al. (2014).  Evaluating Hebbian reinforcement learning BMI using an in silico brain model and a virtual musculoskeletal arm.. Neural Control of Movement.
Dura-Bernal, S., Neymotin S., Kerr CC., Sivagnanam S., Majumdar A., Francis JT., et al. (2017).  Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and Development. 61, 6–1.
M
Neymotin, S., Lytton WW., Olypher AO., & AA F. (2011).  Measuring the quality of neuronal identification in ensemble recordings. jnsci. 31, 16398–16409.
Neymotin, SA., Salvador D-B., Suter BA., Migliore M., Shepherd GMG., & Lytton WW. (2015).  Microconnectomics of primary motor cortex: a multiscale computer model. Multiscale Modeling. National Institutes of Health.
Taxin, ZH., Neymotin S., Mohan A., Lipton P., & Lytton WW. (2014).  Modeling molecular pathways of neuronal ischemia. Prog Mol Biol Transl Sci. 123, 249–275.
Kerr, CC., Neymotin SA., Song W., Francis JT., & Lytton WW. (2011).  Modulation of stimulus fields in a computer model of the thalamocortical system. Society for Neuroscience.
Dura-Bernal, S., Li K., Brockmeier A., Kerr C., Neymotin S., Principe J., et al. (2014).  Modulation of virtual arm trajectories via microstimulation in a spiking model of sensorimotor cortex. BMC Neuroscience. 15, P106.
Chadderdon, GL., Mohan A., Suter BA., Neymotin S., Kerr CC., Francis JT., et al. (2014).  Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput. 26, 1239–1262.
Neymotin, SA., BA S., Migliore M., Salvador D-B., Shepherd GMG., & Lytton WW. (2015).  Motor cortex neurons: from experiment to model via evolutionary algorithms. Computational Neuroscience.
Lytton, WW., Neymotin S., & Kerr CC. (2014).  Multiscale modeling for clinical translation in neuropsychiatric disease. J Comput Surgery. 1, 7.
Neymotin, S., Dura-Bernal S., Lakatos P., Sanger TD., & Lytton WW. (2016).  Multitarget multiscale simulation for pharmacological treatment of dystonia in motor cortex. Front Pharmacol. 7, 157.