Lab Publications

Found 124 results
[ Author(Desc)] Title Type Year
Filters: Type is Conference Paper  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Doherty, D. W., Dura-Bernal S., Neymotin S. A., & Lytton WW. (2018).  Identifying avalanches in simulated mouse primary motor cortex (M1). Society for Neuroscience 2018 (SFN '18).
Doherty, D.. W., Dura-Bernal S.., & Lytton W.. W. (2019).  Computer models of mouse area M1 show avalanches for full model and subcircuits defined by layer or cell type. Society for Neuroscience 2019 (SFN '19).
Doherty, D., Sivagnanam S., Dura-Bernal S., & Lytton W. W. (2018).  Simulation of avalanches in mouse primary motor cortex (M1). Computational Neuroscience Meeting (CNS 18').
Dura-Bernal, S., Gleeson P., Neymotin S., Suter B. A., Quintana A., Cantarelli M., et al. (2018).  NetPyNE: a high-level interface to NEURON to facilitate the development, parallel simulation and analysis of data-driven multiscale network models. Computational Neuroscience Meeting (CNS 18').
Dura-Bernal, S., Garreau G., Andreou C. M., Andreou A. G., Georgiou J., Wennekers T., et al. (2011).  Human Action Categorization Using Ultrasound Micro-Doppler Signatures. HBU.
Dura-Bernal, S., BA S., Kerr C. C., Quintana A., Gleeson P., Shepherd GMG., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience.
Dura-Bernal, S., Suter B. A., Quintana A., Cantarelli M., Gleeson P., Rodriguez F., et al. (2018).  NetPyNE: A GUI-based tool to build, simulate and analyze large-scale, data-driven network models in parallel NEURON. Society for Neuroscience 2018 (SFN '18).
Dura-Bernal, S., Suter B. A., Neymotin S. A., Kerr C. C., Quintana A., Gleeson P., et al. (2016).  NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks. Computational Neuroscience Meeting (CNS 16').
Dura-Bernal, S., Suter B. A., Neymotin S. A., Quintana A., Gleeson P., Sheperd G. M. G., et al. (2015).  Normalized cortical depth (NCD) as a primary coordinate system for cell connectivity in cortex: experiment and model. Society for Neuroscience 2015 (SFN '15).
Dura-Bernal, S., Menzies R. J., McLauchlan C., van Albada S. J., Kedziora D. J., Neymotin S., et al. (2016).  Effect of network size on computational capacity. Computational Neuroscience Meeting (CNS 16').
Dura-Bernal, S., Neymotin S. A., Suter B. A., Kelley C., Tekin R., Shepherd G. M. G., et al. (2019).  Cross-frequency coupling and information flow in a multiscale model of M1 microcircuits. Society for Neuroscience (SFN'19).
Dura-Bernal, S., Griffith E. Y., Marczak A., O'Connell N., McGinnis T., Lytton W. W., et al. (2019).  Data-driven model of auditory thalamocortical system rhythms. Society for Neuroscience (SFN '19).
Dura-Bernal, S.., Neymotin S.. A., Suter B.. A., Kelley C.., Tekin R.., Shepherd G.. M., et al. (2019).  Response to simultaneous long-range inputs and oscillatory inputs in a multiscale model of M1 microcircuits. Society for Neuroscience 2019 (SFN '19).
Dura-Bernal, S., Chadderdon G.L.., Neymotin S., Zhou X., Przekwas A.., Francis J.T.., et al. (2013).  Virtual musculoskeletal arm and robotic arm driven by a biomimetic model of sensorimotor cortex with reinforcement learning. Signal Processing in Medicine and Biology Symposium (SPMB), 2013 IEEE. 1-5.
Dura-Bernal, S., Zhou X., Chadderdon G. L., Przekwas A., & Lytton WW. (2013).  Interfacing a biomimetic model of sensorimotor cortex with a musculoskeletal model and a robotic arm. Society for Neuroscience 2013 (SFN '13).
Dura-Bernal, S., Li K., Brockmeier A., Kerr CC., Neymotin S., Principe J., et al. (2014).  Repairing lesions via microstimulation in a spiking network model driving a virtual arm.. Society for Neuroscience.
Dura-Bernal, S., Prins N., Neymotin S., Prasad A., Sanchez J., Francis JT., et al. (2014).  Evaluating Hebbian reinforcement learning BMI using an in silico brain model and a virtual musculoskeletal arm.. Neural Control of Movement.
Dura-Bernal, S., Kerr C., Neymotin S., Suter B., Shepherd G., Francis J., et al. (2015).  Large-scale M1 microcircuit model with plastic input connections from biological PMd neurons used for prosthetic arm control. 24th Annual Computational Neuroscience Meeting (CNS15).
Dura-Bernal, S., Majumdar A., Neymotin S., Sivagnanam S., Francis J. T., & Lytton WW. (2015).  A dynamic data-driven approach to closed-loop neuroprosthetics based on multiscale biomimetic brain models. IEEE Interanationl Conference on High Performance Computing 2015 Workshop: InfoSymbiotics/Dynamic Data Driven Applications Systems (DDDAS) for Smarter Systems, Bangalore, India.
Dura-Bernal, S., Neymotin S. A., Suter B. A., Shepherd G. M., & Lytton WW. (2017).  Long-range inputs and H-current regulate different modes of operation in a multiscale model of mouse M1 microcircuits. Society for Neuroscience 2017 (SFN '17).
Dura-Bernal, S., Li K., Brockmeier A., Kerr C., Neymotin S., Principe J., et al. (2014).  Modulation of virtual arm trajectories via microstimulation in a spiking model of sensorimotor cortex. Computational Neuroscience Meeting (CNS '14). 15, P106.
Dura-Bernal, S., Wennekers T.., & Denham S.. (2010).  The role of feedback in a hierarchical model of object perception. Proceedings of BICS 2010 - Brain Inspired Cognitive Systems 14-16 July 2010, Madrid, Spain..
K
Kelley, C.., Dura-Bernal S.., Neymotin S.., & Lytton W.. W. (2019).  Dendritic resonance in a detailed model of pyramidal tract neuron of mouse primary motor cortex. Society for Neuroscience 2019 (SFN '19).
Kerr, C., Choi J. S., Dura-Bernal S., Francis J. T., & Lytton WW. (2014).  One size does not fit all: Calibrating microstimulation to individual subjects using spiking network models. Society for Neuroscience 2014 (SFN '14).
Kerr, CC., Fietkiewicz CT., Chadderdon GL., Neymotin SA., & Lytton WW. (2010).  Development of In Silico Brain for DARPA REPAIR project. DARPA Neural Engineering, Science, and Technology Meeting.
Kerr, CC., Mo J., Neymotin SA., M D., & Lytton WW. (2011).  Interlaminar Granger causality and alpha oscillations in a model of macaque cortex. Computational Neuroscience.
Kerr, C. C., Van Albada S. J., Neymotin S. A., Chadderdon, Iii G. L., Robinson P. A., & Lytton W. W. (2013).  Multiscale modeling of cortical information flow in Parkinson's disease. Computational Neuroscience Meeting (CNS '13).
Kerr, CC., Neymotin SA., Song W., Francis JT., & Lytton WW. (2011).  Modulation of stimulus fields in a computer model of the thalamocortical system. Society for Neuroscience.
Kerr, CC., Neymotin SA., Mo J., Schroeder CE., M D., & Lytton WW. (2011).  Interlaminar feedback connections dominate in macaque inferotemporal cortex: in vivo and in silico studies. Society for Neuroscience.
Kerr, C. C., O'Shea D. J., Goo W., Dura-Bernal S., Francis J. T., Diester I., et al. (2014).  Network-level effects of optogenetic stimulation in a computer model of macaque primary motor cortex. Computational Neuroscience Meeting (CNS 14').
Kerr, CC., van Albada SJ., Chadderdon GL., Neymotin SA., Robinson PA., & Lytton WW. (2012).  Effects of basal ganglia on cortical computation: a hybrid network/neural field model. Society for Neuroscience.
Kerr, C., Van Albada S. J., Neymotin S. A., Chadderdon G. L., Robinson P. A., & Lytton WW. (2012).  Effects of basal ganglia on cortical computation: A hybrid network/neural field model. Society for Neuroscience 2012 (SFN '12).
Kerr, C., Von Kraus L., Iordanou J., Neymotin S. A., Francis J., & Lytton WW. (2013).  Receptive field formation and erasure in somatosensory cortex. Society for Neuroscience 2013 (SFN '13).
Kerr, C., Dura-Bernal S., Menzies R. J., Mclauchlan C., Van Albada S. J., Kedziora D. J., et al. (2016).  Computational capacity as a function of network size. Society for Neuroscience 2016 (SFN '16).
Kubie, J. L., Fenton A. A., Lytton WW., & Burgess N. (2009).  Grid-cell models for navigation and context discrimination. Society for Neuroscience 2009 (SFN '09).
L
Lakatos, P., Barczak A., Neymotin S. A., Lytton WW., Mcginnis T., Javitt D. C., et al. (2014).  Thalamocortical dynamics of rhythmic selective and tonic suppressive modes in the auditory system. Society for Neuroscience 2014 (SFN '14).
Lazarewicz, M. T., Contreras D., Finkel L. H., & Lytton WW. (2009).  Computer model of a theta-gamma dissociation in hippocampus. Society for Neuroscience 2009 (SFN '09).
Li, K., Dura-Bernal S., Francis J., Lytton WW., & Principe J. (2015).  Repairing Lesions via Kernel Adaptive Inverse Control in a Biomimetic Model of Sensorimotor Cortex. Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference. 1-4.
Lin, Z., Tropper C., Patoary M. Nazrul Ish, McDougal R. A., Lytton WW., & Hines M. L. (2015).  Ntw-mt: A multi-threaded simulator for reaction diffusion simulations in neuron. Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. 157–167.
Lytton, WW., Knox A., & Rosenthal J. J. C. (2017).  Site-directed mRNA editing of sodium channels has potential to alter neuronal firing and network dynamics: Computer models. Society for Neuroscience 2017 (SFN '17).
Lytton, WW., Neymotin SA., Lee HK., Uhlrich DJ., & AA F. (2008).  Circuit changes augment disinhibited shock responses in computer models of neocortex. American Epilepsy Society Annual Meeting.
Lytton, WW. (2018).  Multiscale modeling of brain disease. Society for Neuroscience 2018 (SFN '18).
Lytton, W. W., & Hines M. (2007).  Just-in-time connectivity for very large neuronal networks. Computational Neuroscience Meeting (CNS 07').
Lytton, WW., & Shepherd G. M. G. (2010).  Computer network model predicts dependence of neocortical laminar activation patterns on form of stimulation. Society for Neuroscience 2010 (SFN '10).
Lytton, WW., Kerr CC., Chadderdon GL., Neymotin SA., & Francis JT. (2012).  Reinforcement learning of 2-joint virtual arm reaching in detailed cortex simulation. Neural Control of Movement.
Lytton, WW., & Drongelen W. (2015).  Beyond the canon: temporal and spatial multiscale organization in cortex. Computational Neuroscience Meeting Workshop.
M
Mcdougal, R. A., Bulanova A. S., Hines M. L., & Lytton WW. (2015).  Hybrid 1d/3d reaction-diffusion in the neuron simulator. Society for Neuroscience 2015 (SFN '15).
McDougal, R., Hines ML., & Lytton WW. (2012).  Reaction-diffusion modeling in the NEURON simulator. Computational Neuroscience.
McDougal, R. A., Newton A. J. H., & Lytton W. W. (2018).  Building and visualizing reaction–diffusion simulations in NEURON. Computational Neuroscience Meeting (CNS 18').
Mcdougal, R. A., Lytton WW., & Hines M. L. (2011).  Object-oriented reaction-diffusion modeling in the neuron simulator. Society for Neuroscience 2011 (SFN '11).
Mcdougal, R. A., Hines M. L., & Lytton WW. (2012).  Calcium-electrical interactions: An example of reaction-diffusion in the neuron simulator. Society for Neuroscience 2012 (SFN '12).
Mcdougal, R. A., Tropper C., Hines M. L., & Lytton WW. (2016).  Expanding NEURON support for reaction-diffusion models. Society for Neuroscience 2016 (SFN '16).
McDougal, RA., Hines ML., & Lytton WW. (2014).  A method for multi-simulator reaction-diffusion with NEURON. Computational Neuroscience.
Mcdougal, R. A., Newton A., Hines M. L., & Lytton WW. (2018).  Building, simulating, and visualizing reaction-diffusion models with NEURON's enhanced rxd module. Society for Neuroscience 2018 (SFN '18).
Mcdougal, R. A., Newton A. J. H., Patoary M. N. I., Tropper C., Hines M. L., & Lytton WW. (2017).  Parallel stochastic spines in NEURON reaction-diffusion simulations. Society for Neuroscience 2017 (SFN '17).
Mcdougal, R. A., Hines M. L., & Lytton WW. (2014).  Calcium 'impedance mismatch' – the role of geometry on diffusion dynamics. Society for Neuroscience 2014 (SFN '14).